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BY 
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ABSTRACT 

A class  of zero-sum,  two-person s tochas t ic  games  is shown to have a value 

which  can  be ca lcula ted  by t ransf in i te  i terat ion of an  operator .  T h e  g a m e s  

considered have  a coun tab le  s t a te  space,  finite act ion spaces  for each player,  

a n d  a payoff  sufficiently general  to include classical s tochas t ic  g a m e s  as well 

as Blackwell 's  infinite G6 g a m e s  of imperfect  informat ion.  

1. In troduct ion  

Let X be a countable, non-empty set of states, and let A and B be finite, non- 

empty  sets of actions for players I and II, respectively. Let u be a bounded, 

real-valued utility function defined on X and let q be a function which assigns to 

each triple (x, a, b) in X × A × B a probability distribution q(.Iw, a, b) on X.  

The game starts at some initial state x. Player I chooses an action al E A and, 

simultaneously, player II chooses bl E B. (The players may choose their actions 

at random.)  The next state xl has distribution q(.lx,  al, bl) and is announced 

to the players along with their chosen actions. The procedure is i terated so as to 

generate a random sequence xl ,  x2 , . . ,  and the payoff from player II to player I 

is 

(1.1) u* = l imsupu(zn) .  
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This payoff function is quite general and includes, for example, the classical 

payoff 

lira sup r (z i )  /n 

where r is a bounded, real-valued function on X. To see this, redefine the state 

space to be the set of finite sequences (xl,..., x,) of elements of X and set 

tt(Zl,...,Xn)= r(Xi In 

It is clear how to redefine the law of motion q. One can also redefine the state 

space to allow the payoff to depend on actions as well as states. 

Similar, but  slightly more intricate, transformations earl be used to show that 

our formulation includes the G6 games of Blackwell [2,3]. Indeed the operators 

defined below are analogous to his. 

The techniques which we use to show our game has a value are from the 

Dubins and Savage theory of gambling [7]. If the action set B for player II is 

a singleton, then the game is a nonleavable gambling problem for player I. An 

operator solution to such problems was given by Dubins et al. [6]. Our approach 

is an extension of their methods which involve the approximation of nonleavable 

problems by leavable problems in which a gambler is allowed to stop play at any 

time. 

Similarly, we introduce a "leavable game" in which player I (but not player 

II) can stop play at any time n and receive u(x,) from player II. It is shown in 

section 3 that the leavable game starting from state x has a value U(x) which can 

be calculated by backward induction as follows: To each bounded, real-valued 

function ~ defined on X,  let S~(x)  be the value of an aux i l i a ry  one-day game 

A(~0)(x) starting from x with payoff ~o; i.e. 

S~(x)  = supinf / f f ~O(xl)q(dxl]x,a,b)t~(da)u(db) 
tt u j 

where/~ and u range over the sets of probability measures on A and B, respec- 

tively. Define 

(1.3) U0 = u 

and, for n = 0 , 1 , . . . ,  

(1.4) U.+, = u V SUn. 
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Here a V b is the maximum of a with b. Let 

35 

U = sup  Un. 
n 

Next define an operator T by the rule 

(1.5) Tu = SU. 

Equation (1.5) may be a little confusing at first glance since u does not appear 

explicitly on the right side. We remind the reader that U is derived from u in 

accordance with the equations above. For each initial state x, Tu(x )  is the value 

of a game in which player I can stop at any time n > 1 and receive u (x , )  as will 

be shown in section 3. 

Now let 

(1 .6 )  Q0 = Tu 

and, for every countable ordinal ~, let 

Qe = T(u h (inf Q,)),  

where a A b is the minimum of a and b. Set 

(1.8) Q = inf Q~ 

Because X is countable and the Q~'s are decreasing, there is a countable ordinal 

~* such that Q = Q~. and T(u A Q) = Q~.+I = Q. It is shown in section 4 that 

Q(x) = V(x), the value of the game with payoff u* starting from x. 

Stochastic games were formulated by Shapley [14], with state and action spaces 

finite and payoff function equal to the total discounted reward. Shapley proved 

that his game had a value and that both players had optimal stationary strate- 

gies. Thereafter, a number of authors considered the problem when the payoff 

function is the average reward pay day. Notable contributors to the average 

reward problem include Gillette [8], Hoffman and Karp [9], Blackwell and Fer- 

guson [4] and Kohlberg [10], who solved different special cases of the problem. 

The definitive solution of the problem was provided by Mertens and Neyman 

[12], who used a difficult result of Bewley and Kohlberg [1] on the asymptotic 
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behavior of the value of the discounted reward game as the discount factor tends 

to one. 

Blackwell [2] proposed a variant of Shapley's game in which the law of motion 

was eliminated but which allowed for payoff functions more general than either 

the total discounted reward or the average reward per day. He proved that a 

win-lose game, where the winning set for player I is a G6 subset of the set of 

histories, has a value. In [3], he gave an operator solution of the game problem. 

This paper, together with [6], forms the basis of the present article. 

The next section has some definitions and preliminary results on strategies 

and stop rules. Leavable games are treated in section 3 and our main result is in 

section 4. The final section has three simple examples. 

2. Preliminaries 

Let Z -- A x B × X and define the space  o f  h i s to r ies  to be H --- Z x Z x . . . .  An 

element h -- (zl, z2 , . . . )  of H will be written as h --- ((al,  bl, xl) ,  (a2, b2, x2) , . . . )  

where zn -- (an, bn, xn) for every n. We use pn(h) or, more briefly, pn to denote 

the partial history (z l , . . . ,  z,). 
Let P(A) and P(B) be the sets of probability measures on A and B, respec- 

tively. Given z E X, ~ E P(A), and v E P(B), write m = re(x, ~, t,) for the 

probability on Z given by 

m{(a, b, Xl)} = p{a}v{b}q({xl }Ix, a, b) 

for (a,b, xl) E Z. 
A s t r a t e g y  a for player I is a sequence a0, a l , . . ,  where a0 E P(A) and, for 

n >_ 1, an is a mapping from Z n into P(A). A strategy r for player II is 

defined similarly with P(B) in place of P(A). Strategies a and r together with 

an initial state x determine a probability measure P~,, = Px,~,, on the Borel 

subsets of H. (The initial state x will usually be clear from the context and we 

will usually suppress it.) Namely, the P~,,~ distribution of the first coordinate 

Zl = (al ,  bl, Zl) is P~,0,,0 = re(x, g0, r0) and the P~,~ conditional distribution of 

zn+ l  = (an+l, ba+ l ,  Xn+l) given z l , . . . ,  Zn is 

P , , , ( . I z , , . . .  , Zn) = m(Xn,  an(Zl,..., Zn), rn(Zl,..., Zn)). 

If g is a bounded, Borel measurable function from H to the reals, we will write 

its expectation under P.,~ as f gdP.,,- or Ev,rg. 
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If a is a strategy and p = (zl,..., z,) is a partial history, the conditional 

strategy a~v] is defined by 

~[p]o = , , . (p ) ,  

~ [ p ] ~ ( z ; , .  , z ' )  = ~ , + ~ ( z l ,  , ' ,z '~)  . . . . .  Z n  , Z l  , . . . 

for all m >_ 1 and (z~, . . . ,  z~) E Z m. Given strategies a and r for players I and 

II, the probability P~'[p],~[E = P=,,~'[E,=[p] is easily seen to be a P=,= conditional 

distribution for (Z,+l, z,,+2,.. .)  given (Z l , . . . ,  z ,) .  Thus, if g: H ~ R is bounded 

and Borel measurable, 

(2.1) E~.,~g = f {E~tp.(~)j,~[p.(h)l(gp.(h))}dP.,~(h) 

where, for p = p , ( h )  = ( z l , . . .  , z , ) ,  gp is the p-section of g defined on H by 

(gp)(h') ' ' = ( g p ) ( z , , z ~ , . . . )  g(z,, , ' ' -~- . . .  Z n , Z l , Z 2 , . . .  ) .  

In the special case when g(h)  = u*(h) = lim, supu(x , ) ,  the function u*p is just 

u* and (2.1) simplifies to 

f (E cp.(h) ") ( = ],~[p.(h)lu dP~,,~ h.) 

A s t opp i ng  t i m e  t is a mapping from H to {0, 1, . . .} t3 {~}  such that, for 

n = 0, 1 , . . . ,  if t (h)  = n and h' agrees with h in the first n coordinates, then 

t (h ' )  = n. (Notice that, if t(h) = 0 for some h, then t is identically zero.) A s top  

rule  t is a stopping time which is everywhere finite. 

If t is a stopping time, h = (Zl,Z2,.. .)  = ( ( a l , b l , Z l ) , ( a 2 , b 2 , x 2 ) , . . . ) ,  and 

t (h)  < cx), we define the functions z t ,x~,pt  to have values zt(h),xt(h),p~(h) = 

( z l , . . . , z t ( M )  at h. If t is a stop rule, Pa[p,],r[p,] = Px,,~'[pd,~[pd is a Pa, r con- 

ditional distribution for ( z t+ l , z t+2 , . . . )  given ( z l , . . . ,  zt) and (2.1) generalizes 

to 

Ea,=g = f {E=tp,],,tp,j(gpt))dP=,,. (2.2) 

If t is a stop rule and p = ( z l , . . . ,  zn) is a partial history, define tip] on H by 

I I I 
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Notice that,  if t ( z l , . . . ,  zn , . . . )  >_ n, then tip] is itself a stop rule in which case 

tip] is called a cond i t i ona l  s t op  ru le  g iven  p. When p = (z), we write z for p 

and t[z] for tip]. 

There is a natural way to associate with every stop rule t an ordinal number 

j( t)  called the i ndex  of t by setting j (0)  = 0 and requiring, for t > 0, that 

j( t)  = sup{j(t[z]) + 1: z E Z}. 

This definition of the index is equivalent to that of Dellacherie and Meyer [5], 

as was pointed out by Maitra, Pestien, and Ramakrishnan [11, Proposition 4.1]. 

Furthermore, j(t) is familiar to students of Dubins and Savage as being the 

structure of the finitary function zt (cf. [7, sections 2.7 and 2.9]) except for 

the uninteresting case when Z is a singleton. One of our arguments will use 

transfinite induction on j(t) and it is important to notice that,  for t > 0 and all 

z, j(t[z]) is strictly less than j(t). 

Consider the special case of (2.1) where n = 1 and g = u(xt) for a stop rule 

t > 0. Notice that (xtzl)(z2, . . . )  = x t (z l , z2 , . . . )  = xt[z~](z2,...) if we make the 

convention that xt[zt](z2,...) 

(2.3) E,,,ru(zt) = 

= x l  w h e n  t[z,] = 0.  T h u s  ( 2 . 1 )  g i v e s  

f{ E . [ z , M . , J u ( x , t z , J ) } d P o 0 , T 0 ( z l ) -  

We conclude these preliminaries by stating a result which is needed in order 

to approximate the game with payoff u* by leavable games. 

LEMMA 2.1: [15, Theorem 3.2] I f  u is a bounded, real-valued functJon on X and 

P is a probability measure on the Borel subsets of H, then 

/ u ' d P  = infsup f u(z , )dP 
s t > s  

where s and t vary over the set of stop rules. 

3. Leavable games  

Let u be a bounded, real-valued function defined on X. Then u and an initial 

position z determine a leavable  g a m e  £(u)(x) in which player I chooses a 

strategy a and a stop rule t, player II chooses a strategy v, and II pays I the 

quantity E~,~.u(xt). Here we allow t = 0 and require x0 = x. 
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THEOREM 3.1: The leavable game f.(u)(x) has a value U(x) = sup U,(x), where 

the functions Un are as defined by (1.3) and (1.4). 

For the proof, we will also consider, for n = 0, 1 , . . . ,  an n-day leavable game 

£,(u)(x) with the same rules except that player I must choose a stop rule t < n. 

LEMMA 3.2: The n-day leavable game f . (u)(x)  has value U,(x), and both play- 
ers have optimal strategies. 

Proof: If n = 0, the only stop rule allowed to player I is t = 0. So the value of 

£0(u)(w) is clearly Vo(x) -- u(x). 

Assume the result for n and let Y.+] (x) ,  _U.+](x) be the upper and lower 

values for £,+,(u)(x). 

To see that U,+I(x ) >_ U,+l(x), consider two cases. First suppose u(x) = 

U,+l(X). Then player I takes t = 0 and any a to get E#,~u(xt) = u(x) = U,+l(X) 

for all v. Next suppose SU,(x) = U~+i(x). In this case player I chooses a0 to 

be optimal in the auxiliary game A(U,)(x) defined in the introduction and, for 

each zl = (al ,  b,, x , ) ,  chooses a conditional strategy a[zl] and stop rule t[zl] to 

be optimal in f , (u)(x l ) .  Then, by (2.3), for any -r, 

( 3 . 1 )  

>-- / Un(xl)dPa°'r°(Zl) 

>_ 

= 

To see that U , + l ( x )  _< U,+I(X), let r0 be optimal for player II in the auxiliary 

game A(U,)(x) and, for each Zl = (al,bl,xl), let r[zl] be optimal for II in 

£,(u)(x). Given any a and t _< n + 1 for player I, repeat the calculation in (3.1) 

above. The inequalities reverse to give the desired result. II 

The next lemma gives two useful properties of the operator S. 

LEMMA 3.3: Let ~1 <_ ~2 <_ "'" be uniformly bounded, rea/-va/ued functions on 

X. Then 

(a) S ~  <_ S~o2 and 

(b) lira. S ~ .  = S(l im.  ~o.). 
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Proof." (a) is obvious. For (b), set ~0 = lim ~on. Fix x and choose p E P(A) so 

that, for all b E B, 

f / ~ ( x , l q ( d x ,  lz, a,b)l~(da) > S~(x). 

Let e > 0. Then, for n sufficiently large and all b, 

f f >_ , .  

Hence, for n sufficiently large, (S~o,,)(x) > (S~o)(x) - e. | 

LEMMA 3.4: u = U0 _< U1 <_ "" ". 

Proof." Use Lemma 3.3(a) or Lemma 3.2. | 

Let U(x) and U(x) be the upper and lower values of E.(u)(x). 

LEMMA 3.5: U(x) > U(x). 

Proof." Let e > 0. Choose n so that Un(x) > U(x) - e. Let a, t be optimal in 

zn(~)(x). Then, for every T, E~,~(x,)  > Un(X) > U(x)  - ~. m 

The next result in an extension to leavable games of a fundamental result of 

Dubins and Savage [7, Corollary 2.14.1]. 

LEMMA 3.6: U is the least, bounded, rea/-va/ued function qo on X such that 

(a)~ > u ~ d  (b)S~ < ~. 

Proof: Suppose qa satisfies (a) and (b). So qo > U0 = u. Assume qo > Un. Then 

> S~ > SUn and ~ > u V SUn = Un+l. Hence, q~ > Un for all n and qo _> U. 

Obviously, U >__ u, and, by Lemma 3.3(b), SU = S( l imU,)  = l imSUn _< 

lim Un+l  = U.  ii 

For each z E X,  let v(x) be a probability on B which is optimal for player II in 

the auxiliary game A(U)(x). Then define r x to be the strategy for II such that 

T, -- ~,(:. ) and r~ (z~ , . . . ,  Zn) = v(x,,) for all n and z~ , . . . , zn .  

(Here ::~ (an, bn, xn).) 
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LEMMA 3.7: U(x) <_ U(x) and r x is an optimal strategy for player II  in £(u)(x). 

Proof." Let a be a strategy for player II  and let t be a stop rule. We will show 

that  

E~,, .u(xt)  <_ U(x) 

by induction on j(t). The inequality is obvious when j( t)  = O, i.e. when t = 0. 

Let t be a stop rule with index j( t)  = a > 0 and assume the inequality holds for 

all a, x and stop rules of index less than a.  Then, by (2.3) 

E~,r=u( xt ) = ./{E~[zd,~-, u(xt[zll) }dP~o,,(x)( z, ) 

<- f U(xl)dP~o,"(~)(Zl) 

< s v ( x )  

< v(x). m 

In view of Lemmas 3.5 and 3.7, the proof of Theorem 3.1 is complete. 

The next result is a form of the optimality equation of dynamic programming. 

LEMMA 3.8: U = u V S U .  

Proof." That  U _> u V SU is immediate from Lemma 3.6. For the opposite 

inequality, fix x and suppose u(z) < U(x). Then, for n sufficiently large, u(x) < 

Un(x) and so 

U(x) = lira U.+,(x) = lim SU.(x) = SU(x) 

by Lemma 3.3(b). | 

Consider now a slight modification f..*(u)(x) of the leavable game in which 

player I chooses a s trategy a and a stop rule t _> 1, player II  chooses a strategy 

~- and, as before, II pays I the quantity E~,,,-u(xt). The only difference is that  

player I is not allowed to take t = 0. 

THEOREM 3.2: The game £*(u)(x) has a value equal to SU(x) and r x, as defined 

before Lemma 3.7, is optimal/'or player II. 

Proof. Fix x E X and let y be an element outside X.  Consider a new problem 

with state space X '  = X U iv}, the same action sets as before, the same utility 

u and law of motion q on X and extended to y as follows: 

u(y) = inf{u(x'): x' • X }  - 1, 

q('lY, a, b) = q(,Ix, a, b). 
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In other words, the utility at y is such that player I has every incentive to leave y 

and the law of motion from y is such that it takes the system to the same states 

with the same distribution as the law of motion from x. 

It now follows that the leavable game £(u)(y) is equivalent to f~*(u)(x) as 

player I has no incentive to use t = 0 when the initial state is y. Thus U(y) is 

the value of £*(u)(x)  and, by Lemma 3.8, 

u(y)  = u(y) v s v ( y )  = s u ( x ) .  

The proof of Lemma 3.7 shows that,  for all a and t _> 1, 

< 

So r * is optimal. | 

As in the introduction, we denote the value of the game £*(u)(x) by Tu(x). 

4. Nonleavable  games 

For each x E X,  let Af(u)(x) be the game described in the introduction in which, 

starting from x, player I chooses a strategy a, player II chooses a strategy r ,  and 

II pays I the quantity Ea,rU*. 

THEOREM 4.1: The game Af(u)(x) has a value V(x) which is equal to Q(x), 

where Q is defined by (1.8). 

Let V(x) and V(x) be the upper and lower values, respectively, of Af(u)(x). 

PROPOSITION 4.2: I f ~  is a bounded, rea/-va/ued function on X such that T(u A 

~) >_ ~, then V__ >_ ~o. In particular, V >_ Q. 

Proofi As mentioned in the introduction, T(u A Q) = Q. So it suffices to prove 

the first assertion. The proof is similar to that of Theorem 5.1 in [6], but, for the 

sake of completeness, we will give the details. 

Fix z0 E X and e > 0. We will construct a strategy a for player I such that,  

for every strategy r for I, 

(4.1) >  (Xo) - 

The construction involves the composition of a sequence of increasingly better  

strategies for I i n  the game £ * ( u h ~ ) .  So, for each x E X and ~ > 0, let 



Vol. 78, 1992 SOLUTION OF STOCHASTIC GAMES 43 

a(x,,5),t(x,,5) be ~-optimal for I in/ :*(u A ~)(x). Then, for every r ,  

(4.2) E ~ ( ~ , , ) : ( u  A qo)(x,(~:)) > T(u A ~)(x) - 6 

> ~(~) - ~. 

Now choose positive numbers ~0, ~1,... such that ~ 6~ < e and, for each x 

and n, set an(x) = a(x,,in),t,,(x) = t(x,~n). We take the strategy a to be 

the sequent ia l  compos i t i on  of  t he  (an, tn) s t a r t i n g  f r o m  x0. Intuitively, a 

follows a°(x0) up to time to(zo), then switches to al(Xto(~o)) and so on. To be 

precise, first define stop rules So < sl < " "  by setting, for each h = (zl, z2, . . . )  E 

H, 
s0(h) = t0(z0)(h), 

~+~(h)  = ~ ( h )  + tn+~(~,o)(z,o+~, z,o+~,. . .) .  

~o = : ( ~ o ) o ,  

Now define 

( a°(xo) , (z l , . . .  ,z~) if n < so(h) 
, r , , (Z l , . . . , zn )=  ,rk+lrz ~ :z . 

• k:.-,~, ,k+l,..  ,zn) i fsk(h) < n < Sk+l(h). 

We shall now verify (4.1). Fix a strategy r for II and let P = P~: .  The 

expectations and conditional expectations below are all with respect to P. 

Set Yn = (u A ~)(xs. ), n _> 0. By assumption, 

E(Yo) > ~ ( x o )  - ~0 

and, for n > 1, 

So, for n > 1, 

E(YnlP,,_,) > qo(xs,,_a) - 6n. 

E(Yn) >_ E(tp(xs~_~ )) - ~,~ 

> E ( Y n - 1 )  - ~n. 

By iterating this inequality, we get 

E(Yn) > E(Yo) - (~ + ~ + . . .  + ~ )  

> ~(~o) - (~o + ~, + . . .  + 6~) 

> ~(zo) - e, n > O. 

Hence 

l i m s . p E ( Y . )  >_ V ( x o )  - ~. 
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E(u*) = E(lim sup u(x,)) 
n 

>_ E(lim sup u(x,.  )) 

_> E(lim sup Y,) 

_> lira sup E(Yn) 
n 

> ~o(zo) - ~. 

Isr. J. Math. 

This completes the proof of (4.1) and of the proposition. | 

LEMMA 4.3: V < Q. 

Prool5 It suffices to show V < Q~ for each countable ordinal ~ and we will do 

so by induction on ~. 

To see that V _< Q0, fix x and let r be optimal for II in £*(u)(x). Then for 

any a for I, it follows from Lemma 2.1 that 

E,,,~.u * <_ supE~,,,-u(x,) <_ Tu(x) = Qo(x). 
t > l  

Now let ~ be a positive ordinal and assume that V _< inf,<¢ Q,. Set Re = 

inf~<~ Q,. To show V < Q~, fix x and e > 0. We will find a strategy r for II 

such that, for all a for I, 

(4.3) Ea,ru* <_ Q~(x) + e, 

which clearly suffices. 

To define v, first choose v 1 to be an optimal strategy for II in £*(u A R~)(x) 
and, for every ~ • X,  choose ~(~) for II in N(~)(y)  so that, for all o, 

(4.4) E=,~Cv)U* < V(y) + e/2 < n~(y) ÷ e/2. 

For each h = (Zl,  z 2 , . . . )  = ( (h i ,  hi, x 1 ), (a2,  b2, ~72), . . . ) ,  let  

(4.5) A(h) = inf{k: a(xk) > Rf(xk)}. 

Then A is a stopping time with ~ as a possible value. Now take v to be that 

strategy which follows v 1 prior to time A and then switches to Y(x~); that  is, 

ro=Vo 1, 
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{1 rn(zl , . . . , z , )= r~(zl, . . . ,z,) i f n < A ( h ) ,  
¢(x~)n-) ,(Z~+l, . . . ,z~) if n _> A(h). 

Fix a strategy a for I and we will verify (4.3). By Lemma 2.1, it suffices to 

find a stop rule s such that, for all stop rules t _> s, 

(4.6) E~,~u(x,) <_ Q~(x) + e. 

To obtain s, first choose a positive integer m such that 

(4.7) P~,~[A < co] < P~,r[A < m] + e/(4(sup lul + 1)). 

Also, for each partial history p = (z~, . . . ,  z,,) with z,, = (a,,, bn, xn), use Lemma 

2.1 and (4.4) to get a stop rule t(p) such that, for all stop rules t > t(p), 

(4.8) E~,tp],-~(~,,)u(xt) <_ R~(x,) + e/2. 

Now, for h = (Zl, z2,. . .) ,  define 

f A(h) +t(px)(zx+,,zx+2,...) if A(h) < m, •(h) 
m if A(h) > m. 

Let t > s. To check (4.6), condition on p;~^t and calculate: 

< ~<_mR¢(x:~)dP~,,,- + ~>tu(xt)dP~,,T + 3e/4 

= ](u  A R¢)(xx^,)dP~,,., +e 

< T(u ^ + 

= Q d x )  + 

The first line above uses the equality T[p~] = T(x~) for A < oo; the second is by 

(4.7); the third by (4.8) and the fact that t~v~] > s ~ ]  = t(px) if A _< m; the 

fourth by (4.7) and the fact that sup [R~[ _< sup[u[; the fifth by (4.5); the last 

two lines are by choice of r I and definition of Q~, respectively. | 
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Theorem 4.1 is immediate from Proposition 4.2 and Lemma 4.3. 

Mertens and Neyman [12] showed not only that the average reward stochastic 

game with finite state and action spaces has a value, but  also that e-optimal 

strategies exist which are also e-optimal for games of a sufficiently long finite 

horizon. Theorem 4.1 implies that the average reward game with a countable 

state space and finite action sets has a value. The stronger result of Mertens and 

Neyman does not hold for games with a countable state space and finite action 

spaces. We do not know whether our method of proof when specialized to finite 

state and action spaces will yield the stronger result. 

This proof that AZ(u) has a value is analogous to that given by Blackwell in [3] 

that  his G6 games have a value. We could also imitate Blackwell's earlier proof in 

[2] by arguing as in the proof of Lemma 4.3 that T(u AV) >_ V and then applying 

Proposition 4.2 to conclude that V > V. Such a proof would be sightly shorter, 

but less constructive as Blackwell pointed out. Our leavable game £*(u)(x)  is the 

analog of Blackwell's auxiliary game. We are able to avoid use of Sion's minimax 

theorem, which Blackwell invokes to show that his auxiliary game has a value, by 

reducing the game £*(u)(x)  through backward induction to a one-shot game, at 

which stage we can apply von Neumann's theorem. As we will show in another 

paper, the proof given here can be generalized to a Borel measurable setting. We 

conclude this section with a characterization of V similar to Theorem 7.1 in [6]. 

TtIEOREM 4.4: The value function V for the game Ai'(u) is the largest, bounded, 

real-valued function ~ on X such that 

(4.9) T(u A ~) = 

Proof: The function V is a solution to (4.9) because V = Q. Also, every solution 

of (4.9) is majorized by V as follows from Proposition 4.2. | 

5. Three examples 

To illustrate the use of the operators, we present two simple examples. The first 

is a very special case of a class of win, lose, or draw games which were suggested 

to us by David Blackwell. 

EXAMPLE 1: Let X = {w,l ,d};  u(w) = 1, u(1) = -1 ,  u(d) = 0; A = B = {0,1}; 

q(w[w,a,b) = 1 andq(lll,  a,b) = 1 foral la E A,b E B; q(w[d,l ,1)  = q(lld, l,O ) = 

q(lld, O, 1) = 1, q(wld, O, O) = q(dld, O, O) = 1/2. 
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To simplify notat ion,  we write functions on X in vector form. So, for example,  

the uti l i ty funct ion u becomes u = (1, - 1 ,  0). 

The  value of the auxil iary game .A(u) is easily found to be Su  = (1, - 1 ,  - 1 / 7 )  

and, hence, U1 = u V S u  = u. Consequently, TAn = u for all n, U = u, and 

Qo = T u  = Su  = ( 1 , - 1 , - 1 / 7 ) .  

Similar calculations show tha t  for n = O, 1 , . . . ,  Qn+l = TQn  = ( 1 , - 1 ,  x,~+l) 

where x0 = - 1 / 7  and x,,+l = (z,, - 1 ) / (zn  + 7). Fur thermore  the z,, decrease to 

a limit x* = v/8 - 3. It is easily checked that  Q = in fQn  = ( 1 , - 1 , x * )  satisfies 

T(u  h Q) = T Q  = Q. So (1, - 1 ,  x*) is the value. | 

The  game of Example  1 is the same if we take the payoff to be 

lira sup u(xi  /n .  
n 

So its value could also be calculated from that  of the discounted games as in [1]. 

The  value for our  next  example,  which corresponds to Example  1 of Orkin [13], 

cannot  be caleulated from discounted games. 

EXAMPLE 2: g e t  X = { w , l , g , a } ;  u ( w )  = u(g)  = 1, u(O = u (e )  = 0; A = 

B = {0,1}; q(w[w,a,b)  = q(l[l,a,b) = 1 for all a e A,  b • B ,  q(wlg ,1 ,1)  = 

q(w[d , l ,1 )  = 1, q(g[g,O,O) = q(g[d,O,O) = 1, q(d[g,O, 1) = q(d[d,O, 1) = 1, 

g(l[g, 1, O) = q(lld, 1, O) = 1. 

As in Example  1, we use vector notat ion.  So u = (u (w) ,u ( l ) , u (g ) , u (d ) )  = 

(1, 0, 1, 0, ). The  value of .A(u) is found to be Su  = (1, 0, 1/2, 1/2) and U1 = 

u V Su  = (1 ,0 ,1 ,1 /2 ) .  One shows inductively, for n = 0 , 1 , . . . ,  tha t  SU,, = 

(1,0, x , , x n )  where x0 = 1/2 and z,,+l = (2 - z,,) -1.  Thus  U,+ l  = u V S U ,  = 

(1,0, 1, x,,) and U = lira U,, = (1,0, 1,1im x,,) = (1 ,0 ,1 ,  1). 

It follows that  Q0 = Tu  = SU = (1,0, 1, 1) also and Q1 = T(u  ^ Qo) = T u  = 

Q0. So Q0 is a fixed point  and V = Q0 = (1, 0 ,1 ,1) .  | 

Finally consider a modification I (u ) (x )  of the nonleavable game in which the 

payoff f rom player II to player I is 

u .  = l im in fu (xn ) .  

Now u ,  = - ( - u ) * .  So, if we reverse the roles of the two players, if follows from 

Theorem 4.1 tha t  the game I (u ) ( x )  has a value, say W ( x ) .  Clearly W ( x )  < V (x )  
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since u. < u*. For average reward games with finite state and action sets as in 

Mertens and Neyman [12], the values W(x)  and Y(x)  are the same. Here is a 

simple example to show the values need not be the same for an average reward 

game with a countable state space. 

EXAMPLE 3: Let X be the set of all finite sequences x = ( n l , n 2 , . . . , n k )  of 

positive integers; A = B = { 1 }; let G be a subset of the positive integers which 

has inner density zero and outer density one, that is, i f  r is the indicator function 

of G, 

liminf (~-~ r ( i ) ) k  ,=~ / k = O ,  

limsup ( ~  r ( i ) ) k  i=1 / k = l ;  

define 

and 

1 k 
u ( n l , . . . , n k ) =  ~ E r(ni) 

i=l 

q( (n l ,n2 , . . . , nk ,nk  + 1) ] (n l ,n2 , . . . ,nk) ,  1, 1) = 1. 

Then, rot every x, W(x) = 0 = a  V(~) = 1 
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